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INTRODUCTION ENSO occurrence was observed on many scales by many instruments. One of these was the

Five years of broad-band earth radiation budget (ERB) measurements taken by the Nimbus-7 set of broad-band ERB radiometers on board the Nimbus-7 polar orbiter. This spacecraft is

ERB experiment have been archived. This period encompasses the 1982-1983 E1 Nino/Southem sun synchronous, with local-noon and local-midnight equatorial crossing times. The experi-

Oscillation event, which reached a peak near the beginning of the fifth data year (January ment was operational and taking data prior to, during, and following the ENSO event.

1983). A 41-month outgoing longwave radiation subset of this data set, extending from June
OVERVIEW OF THE ERB EXPERIMENT

1980 through October 1983, has been further processed to enhance the spatial resolution. This
On October 22, 1978, the Nimbus-7 spacecraft was launched into a sun synchronous near-

atlas contains the analyses of the restdtant fields and a set of anomaly maps based on a defmi-
polar orbit, with local-noon ascending and local-midnight descending nodes, and a retrograde

tion of pre-E1 Nino climatology. Together they provide the first broad-band glimpse of the
" inclination to the equator of 99.3 ° (Jacobowitz et al., 1978). To minimize degradation in the

terrestrial outgoing longwave radiative response to the E1 Nino event throughout its life cycle.

Of particular interest are the quasi-stationary planetary-scale tropical and mid-latitude patterns optical trains of the various channels (caused by the interaction of deposited out-gassing con-

which emerged as the E1 Nino reached its peak intensity, taminants and the solar UV), the experiment was not activated until November 16, 1978. At
this time, full-time collection of ERB observations commenced, limited only by the constraint

BACKGROUND of available spacecraft power. The major imposition was that of a 3 day on/1 day off instru-

Without question, the 1982-1983 E1 Nino event is associated with one of the largest- ment duty cycle.

amplitude global climate perturbations in recent history. The meteorological ramifications of On board the Nimbus-7 observatory are a wide variety of remote sensing experiments,

this event include: droughts in southern Africa, Indonesia, northern Brazil, and Australia; including the ERB experiment. The ERB instrument package consists of three sections: a ten-

flooding in the central equatorial Pacific, Ecuador, southern Brazil, and Peru; intense tropical channel solar telescope, four wide-field-of-view (WFOV) fixed Earth-flux channels, and eight

cyclones over French Polynesia and the Hawaiian Islands; and unusual storm activity across narrow-field-of-view (NFOV) scanning Earth-radiance channels. The experiment is described

the southern United States from California to the Gulf of Mexico. These global phenomena in detail by Jacobowitz et al. (1984). The solar and the WFOV Earth-flux channels are in

are discussed in detail by Rasmusson et al. (1983a and 1983b), Rasmusson and Wallace (1983), their seventh year of operation, and both are still recording high-quality data. The scanner,

and Rasmusson and Hall (1983). Arkin et al. (1983) produced a "quick-look" atlas of the on the other hand, failed in June 1980 after 20 months of data gathering. The NFOV scanner

event, including the sea-surface temperature, 850 mb and 200 mb wind, and the NOAA-7 data for this early period have been analyzed by Jacobowitz and Tighe (1984). Solar data have

Advanced Very High Resoluti0n Radiometer (AVHRR) 11.5/zm-band outgoing longwave radia- been discussed in numerous places [see, for instance, Hickey and Alton ] and continue

tion fields. These illustrate the time evolution of the large-scale features preceding and during to be collected, processed, and analyzed. Relevant to this atlas is the WFOV ERB data set

the event, from September 1982 through August 1983. as archived on the ERB MATRIX tapes and described by Jacobowitz et al. (1984). The WFOV

In order to be able to predict, on a year-to-year basis, fluctuations of our global climate radiometers are capable of measuring the shortwave and total outgoing components of the Earth's

system, and with it the periodic occurrences of the E1Nino/Southern Oscillation (ENSO) events, radiation budget at satellite altitude. From these spacecraft measurements "top of the atmos-

it is important to develop a physical understanding of the ENSO phenomenon. The 1982-1983 phere" (TOA) fluxes may be inferred.



In the Nimbus ERB instruments, a total channel is used to measure both reflected-solar strengths of this data set are that: (1) these are broad-band (4 - 50/zm) measurements, making

and emitted-terrestrial radiation in a spectral band of .2 to 50/zm. At the same time, short- the resultant fields maenergy parameter rather than simply an index; (2) they are global in

wave channels monitor reflected solar radiation in the spectral bands of .2 to 3.8/zm and .7 extent; (3) the calibration is well known; (4) there are no discontinuities in the time coverage;

to 2.8/zm. The calibrated output of the channels andtheir differencesthen yields total reflected and (5) due to the excellent "health" of the instrument andthe spacecraftand dueto reprocessing

shortwave, emitted longwave, near-infrared reflected, ultraviolet and visible reflected, and plans, a consistentlycalibratedextensionof this data set spanninga decade may become available

• total exitant irradiances, in the future.

Channels 12, 13, and 14 view the entire visible Earth disk at all times. Satellite-altitude What distinguishes the present data set from the archived Nimbus-7 data set is the exten-

(955 km) irradiance observations are taken at 4-second intervals throughout the 104-minute sivepost-processing which it has received. Through the use of additionalinformation, already

orbits. It should be emphasizedat this time that this satellite-altitudedata set may not be simply present but "hidden" in the data, it is possible to improve substantially both the time and

reduced to the TOA due to the non-uniform weighting of radiances incident within the fields- space sampling of the data set. The technique has already been developed (Smith and Green,

of-view (FOV's), as noted in King and Curran (1980). Thus, the WFOV observations are 1981)and applied (Bess et al., 1981) to Nimbus-6 ERB data. It is accomplished here for the

actually integrals across the radius of the 29.3 ° Earth central angle (ECA) visible Earth disk; Nimbus-7 ERB data set by fitting a spectrally truncated 12th-degree spherical harmonic field

the half-power point radius is approximately 10o ECA. to the binned observations. By incorporating the known angular instrument response, the ef-

Although calibrated to high precision in the laboratory at three times prior to launch, with fective spatial resolution is doubled along the track, and observations are effectively obtained

no evidence of any calibration drift (Hickey and Karoli, 1974), exposure to the in-flight or- at each target area for each day. This process has been applied to the 41-month data set.

bital environment produced both trends and periodicities in the filtered channels (13 and 14) The maps shown in this atlas were made from the ascending node (local noon Equator

data set. This requires the application of a set of calibration adjustments (Kyle et al., 1984; crossing time) outgoing longwave radiation fields on the ERB MATRIX tape. On the descend-

Ardanuy and Rea, 1984;Maschhoff et al., 1984)to accountfor the implied calibration changes, ing node (night) side of the orbit, direct sunlight contaminates the WFOV data over some
20 ° of latitude at both satellite sunrise and sunset. These contaminated data were not used,

TECHNICAL APPROACH but the resultant gaps make both the descending node data and the day-night averages less

The roots of the data set illustrated here lie in the data record taken by the ERB experi- susceptible to resolution enhancement. Recent studies (Kyle et al., 1985) indicate that there
ment on board the Nimbus-7 spacecraft. At present, 5 years of these observations have been is a calibration bias in the archived WFOV longwave data. According to this study, the actual

archived. Because of a calibration change, only the latter 4 years (extending from June 1980 ascending node outgoing longwave should be some 11 W/m: larger than indicated on the maps.

through October 1983)represent an internallyconsistentsequenceofthe Earth's radiationbudget. The average day-night means should be some 8 W/m2 larger than the map values. However,
The field most amenableto higher-level analysesat this time is that of the broad-band longwave care should be exercised in transforming map readings to day-night means, as there are large
flux at the so-called "top of the atmosphere." This parameter, during production, is binned regional variations in the diurnal cycle in the outgoing longwave radiation -- see, for exam-

into 2070 target areas, each approximately 500 km by 500 km. Time averages in a daily and pie, Minnis and Harrison (1984). This bias problem will have little affect on the anomaly maps.
in a monthly sense are subsequently generated and placed on the ERB MATRIX tape. The Corrected MATRIX tapes will not be available for approximately 2 years.
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SIMULATION the outgoing longwave radiation (OLR) field at the top of the atmosphere. The most important

Although a complete treatment of the development process that resulted in the deconvolu- is the effective "cloudiness": specifically, perturbations from the climatologicalmean of cloud

tion algorithmused here is outside the scopeof this atlas, some reviewis pertinent. As discussed cover, height, thickness, water content, drop/crystal size distribution, and emissivity. Also

in the previous section, a resampling of the WFOV data set is desirable in terms of both in- important are changes in surface temperature and atmospheric water vapor content and, to

strument coverage and spatial resolution. Two questions may be asked: what is the optimal a lesser extent, atmospherictemperature. Changesin one or more of these parameters,regionally

spectral resolution, and what is the accuracy of the results? To answer these questions, a set or globally, will cause corresponding anomalies in the broad-band OLR at ,the top of the

of "truth" fields is required. For these, the set of 23 dally target-area NFOV ascending-node atmosphere.

longwave fields for June 1979 was used. For simulation purposes, the NFOV-derived "truth" To facilitate the examination of the time evolution of the E1Nino event from the perspec-

fields are assumed perfect: the goal, therefore, is to replicate as closelyas possible the "perfect" tive of the set of top of the atmosphere OLR fluxes, monthly averaged time-anomaly fields

solution. Knowing the orbit parameters for the Nimbus-7 spacecraft, it is possible to simulate, have been generated. These are defined in terms of departures (W/m2) from the climatology

:: on an observation-by-observation, day-by-day basis, a set of synthetic WFOV longwave for that month. The term "climatology" is used loosely here to indicate the 2 years between

measurements. After deconvolution, the resultant spectral amplitudes can then be evaluated June 1980 and May 1982. Thus, a 2-year mean pre-E1Nino seasonal cycle is removed in the

at each target area, and a global root-mean-square (RMS) comparison can be made with the creation of the anomaly maps. Analysis of these fields indicates thatthe OLR anomalyresponse

truth field. The global minimum in the surface formed by a contour map of RMS deviation to the E1Nino event of 1982-1983 can be characterized as having four modes of behavior:

between the two fields as a function of spectral resolution (number of waves versus number onset, intensification, expansion, and decay.

of nodes) then yields the desired spectral truncation. This simulation yielded, for a rhomboidal
Onset of El Nino

• truncation,the combinationof 7 waves and12 nodes, or 195 amplitudes.When the complete
The onset phase of the OLR response existed between July and September 1982. Themonth is considered,a global RMSerror of 8 W/m2is obtained.Although solutionsto a higher

phenomenologicalcharacteristicsfor the months were weak anomalies with little spaffalex-wavenumberare possible, no global gain in accuracyis obtained. The improvementin ac-
tent. Indeed, were it not for the ensuingintensificationof these anomalies into majorpertur-curacyappearsto be greatestin the tropicalhalf of the Earthbetween30 °N and 30 °S latitude.
bations, one wouldequatethemwith those otheranomalies "typically" notedin non-E1Nino

As a consequence, tropical featuressuch as the IntertropicalConvergenceZone (ITCZ), the
years. They were, however, stationary and did intensify.

subtropicalbelts, andother non-zonally-symmetricfeaturesas well are more sharplydefined
In July, the incipientE1Nino was only apparentas a weak negative(-21 W/m2) OLRin the deconvolved fields. ArdanuyandKyle (1985) describe the developmentof the dataset

in more detail, anomaly at 175°W on the equatorand a corresponding weak positive anomaly (27 W/m2)
over Borneo/Celebes.

ANOMALIES DURING EL NINO By August, the anomalies had remainedstationaryandintensifiedslightly, with the OLR

Duringthe 1982-1983E1Nino event, significantperturbationsin a diversesetof geophysical deficiencyover the centralPacific Oceanincreasingto -33 W/m2 and the OLR excess over

fieldsoccurred.Of specialinterestto this studyarethose planetary,scalefields thatactto modify Indonesiaat about the same magnitude.
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By September, the positive anomaly over Indonesia extended longitudinally to encom- continued to intensify, reaching -83 W/m 2, and moved 20° further east to a new position

pass Sumatra and New Guinea, and intensified to 36 W/m2. Over the central Pacific Ocean at 140°W. The accompanying positive regions to the north and south, however, remained

the OLR deficit reached -36 W/m2and was already extending along the equator toward South stationary, but continued to intensify. The centers noted previously over the southern United

America. It was now centered slightly south of the equator at 175°W, 5 °S. States, central Europe, and the Arabian Sea/Indian Ocean persisted. Interestingly, the tropical

Intensification of El Nino high/low/high pattern at 140°W was closely mirrored by a strikingly similar low/high/low

The intensificationof the OLR response occurredbetweenOctober1982andJanuary 1983. pattern at 140°E.

During this period the characteristics of the E1Nino response were rapid intensification and In January, the peak amplitudes of the OLR anomalies were reached. The negative radia-

expansion, tion center in the equatorial Pacific reached -88 W/m2. To its north and south, the accompa-
In October, the Indonesian OLR excess temporarilysplit into two centers, each of which nying positive anomalies averaged half its magnitude. An interesting large-amplitude pattern

was more intense than in the preceding month. A large negative anomaly of -50 W/m2was existedalong the equator. The three areas that are normally quite active, convectively, at this

present for the first time over the Arabian Sea. Over the equatorial central Pacific Ocean, time Ofthe year are Indonesia, the Amazon River basin, and the Congo River basin. They

the OLR deficit strengthened substantially to -60 W/m2, almost doubling in intensity in one now showed positive OLR anomalies indicative of reduced convection. These were replaced

month. An eastern extension to 135°W was evident. An important phenomenon appearing with the negative anomalies over the Arabian Sea, the Indian Ocean, and the central equatorial

at this time was the doublet of positive anomalies evident to the north and south of the Pacific Pacific Ocean. The center over Europe intensified, while the center over the United States

equatorial rainfall center. This pair of anomalies has important dynamic implications in that moved into the Gulf of Mexico. At this time the true global nature of the E1Nino event was

it is suggestive of enhanced subsidence caused by a stronger Hadley-type circulation, evident.

In November, the two Indonesian OLR anomalies reemerged over Sumatra/Borneo. A Expansion of El Nino

ring of negative centers surrounded the maximum which clearly dominated the region. The Between the months of February and May 1983, the negative OLR anomaly over the

primary anomaly, over the equatorial Pacific Ocean, intensified further to -79 W/m2 and equatorial Pacific Ocean expanded eastward to the South American coast. At the same time,

moved eastward 15° tO 160°W relative to the previous month. It, like the Indonesian anoma- in the western Pacific Ocean, the anomaly patterns became less stationary.

ly, was surrounded by OLR centers of opposite sign. To its north and south were positive In February, the OLRminimumover the equatorialPacific Oceancontinuedto drift eastward

anomaly centers; the northern-most center at 135°W, 15°N more than doubled in magnitude and weaken slightly to -77 W/m2. Some oscillation in the magnitudes of the positive anoma-

in one month to match the intensity of its southern partner at 165°W, 25 °S. Strong quasi- ly centers to the north and south was evident in this and the next several months. The northern-

stationary features were becoming evident and persisted throughout the intensification phase, most intensified to 47 W/m2 from 32 W/m2, while the southernmost weakened to 28 W/m2.

Two mid-latitudecentersof specialinterest are those anomalieswhichappearedover the southern The positive OLR anomaly over Indonesia weakened slightly as well to 62 W/m2. Two ac-

United States (-29 W/m2) and over central Europe (23 W/m2). companying features are significant with respect to the Australian drought in progress at this

In December, an eastern movement of the two primary anomalies occurred. The Indone- time: these are the weakening of the southern tongue of the OLR maximum over Australia

sian positive anomaly was centered over New Guinea, while the tropical Pacific OLR deficit and the formation of a (-45 W/m2)negative anomaly to the west (20°S, 90 °E) of the subcon-
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tinent. The positive anomaly over Brazil maintained its intensity, while the center over Africa of - 54 W/m 2 off the South American coast and the excess of 48 W/m 2now over the Philip-

weakened. The negative anomaly that was centered over the Gulf of Mexico now extended pines) was still, after 1 year, the largest amplitude perturbation in the global OLR field.

across the Atlantic Ocean to the African coast. In the months of July, August, and September, the Indonesian OLR maximum vanished,

In March, the primary Pacific anomaly weakened slightly to - 71 W/m 2and both moved while the eastern-equatorial Pacific minimum weakened and moved against the coast of South

further eastward and elongated along the equator toward the coast of South America. The ac- America. This, in the OLR field, signified the end of the E1 Nino-induced anomalies.

companying OLR maxima to the north and south intensified. The large positive anomaly that

had remained stationary over Indonesia drifted to the east, while in the south an OLR deficit

drifted eastward over Australia, signifying the end of the drought. Positive anomalies were
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NIMBUS-7 ERB LONGWAVE FLUX FOR AUGUST 1980
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NIMBUS-7 ERB LONGWAVE FLUX FOR SEPTEMBER 1980
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NIMBUS-? ERB L O N G W A V E  FLUX FOR OCTOBER 1980 
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NIMBUS-7 ERB L O N G W A V E  F L U X  F O R  NOVEMBER 1980 
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NIMBUS-7 ERB LONGWAVE FLUX FOR DECEMBER 1980
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